Molecular simulations of carbon dioxide and water: cation solvation.
نویسندگان
چکیده
Proposed carbon dioxide sequestration scenarios in sedimentary reservoirs require investigation into the interactions between supercritical carbon dioxide, brines, and the mineral phases found in the basin and overlying caprock. Molecular simulations can help to understand the partitioning of metal cations between aqueous solutions and supercritical carbon dioxide where limited experimental data exist. In this effort, we used classical molecular dynamics simulations to compare the solvation of alkali and alkaline-earth metal cations in water and liquid CO(2) at 300 K by combining a flexible simple point charge model for water and an accurate flexible force field for CO(2). Solvation energies for these cations are larger in water than in carbon dioxide, suggesting that they will partition preferentially into water. In both aqueous and CO(2) solutions, the solvation energies decrease with cation size and increase with cation charge. However, changes in solvation energy with ionic radii are smaller in CO(2) than in water suggesting that the partitioning of cations into CO(2) will increase with ion size. Simulations of the interface between aqueous solution and supercritical CO(2) support this suggestion in that some large cations (e.g., Cs(+) and K(+)) partition into the CO(2) phase, often with a partial solvation sphere of water molecules.
منابع مشابه
Enzyme microheterogeneous hydration and stabilization in supercritical carbon dioxide.
Supercritical carbon dioxide is a promising green-chemistry solvent for many enzyme-catalyzed chemical reactions, yet the striking stability of some enzymes in such unconventional environments is not well understood. Here, we investigate the stabilization of the Candida antarctica Lipase B (CALB) in supercritical carbon dioxide-water biphasic systems using molecular dynamics simulations. The pr...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملAb initio molecular dynamics simulations of Aluminum solvation
The solvation of Al3+ and its hydrolyzed species in water clusters has been studied by means of ab initio molecular dynamics simulations. The hexa-hydrate Al(H2O) 3+ 6 ion formed a stable complex in the finite temperature cluster simulation of one aluminum ion and 16 waters. The average dipole moment of strongly polarized hydrated water molecules in the first solvation shell of Al(H2O) 3+ 6 was...
متن کاملSO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation–Anion Network
We have carried out an ab initio molecular dynamics study on the sulfur dioxide (SO2) solvation in 1-ethyl-3-methylimidazolium thiocyanate for which we have observed that both cations and anions play an essential role in the solvation of SO2. Whereas, the anions tend to form a thiocyanate- and much less often an isothiocyanate-SO2 adduct, the cations create a "cage" around SO2 with those groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2013